Tea Leaf.ca - Download the EBook SymbolInformational Site Network Informational
Privacy
   Home - Articles - Books

THE DISTRIBUTION OF THE SEXES




Does the insect know beforehand the sex of the egg which it is about
to lay? When examining the stock of food in the cells just now, we
began to suspect that it does, for each little heap of provisions is
carefully proportioned to the needs at one time of a male and at
another of a female. What we have to do is to turn this suspicion
into a certainty demonstrated by experiment. And first let us find
out how the sexes are arranged.

It is not possible to ascertain the chronological order of a laying,
except by going to suitably-chosen species. Digging up the burrows of
Cerceris-, Bembex- or Philanthus-wasps will never tell us that this
grub has taken precedence of that in point of time nor enable us to
decide whether one cocoon in a colony belongs to the same family as
another. To compile a register of births is absolutely impossible
here. Fortunately there are a few species in which we do not find
this difficulty: these are the Bees who keep to one gallery and build
their cells in storeys. Among the number are the different
inhabitants of the bramble-stumps, notably the Three-pronged Osmiae,
who form an excellent subject for observation, partly because they
are of imposing-size--bigger than any other bramble-dwellers in my
neighbourhood--partly because they are so plentiful.

Let us briefly recall the Osmia's habits. Amid the tangle of a hedge,
a bramble-stalk is selected, still standing, but a mere withered
stump. In this the insect digs a more or less deep tunnel, an easy
piece of work owing to the abundance of soft pith. Provisions are
heaped up right at the bottom of the tunnel and an egg is laid on the
surface of the food: that is the first-born of the family. At a
height of some twelve millimetres (About half an inch.--Translator's
Note.), a partition is fixed, formed of bramble saw-dust and of a
green paste obtained by masticating particles of the leaves of some
plant that has not yet been identified. This gives a second storey,
which in its turn receives provisions and an egg, the second in order
of primogeniture. And so it goes on, storey by storey, until the
cylinder is full. Then a thick plug of the same green material of
which the partitions are formed closes the home and keeps out
marauders.

In this common cradle, the chronological order of births is perfectly
clear. The first-born of the family is at the bottom of the series;
the last-born is at the top, near the closed door. The others follow
from bottom to top in the same order in which they followed in point
of time. The laying is numbered automatically; each cocoon tells us
its respective age by the place which it occupies.

To know the sexes, we must wait for the month of June. But it would
be unwise to postpone our investigations until that period. Osmia-
nests are not so common that we can hope to pick one up each time
that we go out with that object; besides, if we wait for the
hatching-period before examining the brambles, it may happen that the
order has been disturbed through some insects' having tried to make
their escape as soon as possible after bursting their cocoons; it may
happen that the male Osmiae, who are more forward than the females,
are already gone. I therefore set to work a long time beforehand and
devote my leisure in winter to these investigations.

The bramble-sticks are split and the cocoons taken out one by one and
methodically transferred to glass tubes, of approximately the same
diameter as the native cylinder. These cocoons are arranged one on
top of the other in exactly the same order that they occupied in the
bramble; they are separated from one another by a cotton plug, an
insuperable obstacle to the future insect. There is thus no fear that
the contents of the cells may become mixed or transposed; and I am
saved the trouble of keeping a laborious watch. Each insect can hatch
at its own time, in my presence or not: I am sure of always finding
it in its place, in its proper order, held fast fore and aft by the
cotton barrier. A cork or sorghum-pith partition would not fulfil the
same purpose: the insect would perforate it and the register of
births would be muddled by changes of position. Any reader wishing to
undertake similar investigations will excuse these practical details,
which may facilitate his work.

We do not often come upon complete series, comprising the whole
laying, from the first-born to the youngest. As a rule, we find part
of a laying, in which the number of cocoons varies greatly, sometimes
falling as low as two, or even one. The mother has not deemed it
advisable to confide her whole family to a single bramble-stump; in
order to make the exit less toilsome, or else for reasons which
escape me, she has left the first home and elected to make a second
home, perhaps a third or more.

We also find series with breaks in them. Sometimes, in cells
distributed at random, the egg has not developed and the provisions
have remained untouched, but mildewed; sometimes, the larva has died
before spinning its cocoon, or after spinning it. Lastly, there are
parasites, such as the Unarmed Zonitis (Zonitis mutica, one of the
Oil-beetles.--Translator's Note.) and the Spotted Sapyga (A Digger-
wasp.--Translator's Note.), who interrupt the series by substituting
themselves for the original occupant. All these disturbing factors
make it necessary to examine a large number of nests of the Three-
pronged Osmia, if we would obtain a definite result.

I have been studying the bramble-dwellers for seven or eight years
and I could not say how many strings of cocoons have passed through
my hands. During a recent winter, in view particularly of the
distribution of the sexes, I collected some forty of this Osmia's
nests, transferred their contents into glass tubes and made a careful
summary of the sexes. I give some of my results. The figures start in
their order from the bottom of the tunnel dug in the bramble and
proceed upwards to the orifice. The figure 1 therefore denotes the
first-born of the series, the oldest in date; the highest figure
denotes the last-born. The letter M, placed under the corresponding
figure, represents the male and the letter F the female sex.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F F M F M F M M F F F F M F M

This is the longest series that I have ever been able to procure. It
is also complete, inasmuch as it comprises the entire laying of the
Osmia. My statement requires explaining, otherwise it would seem
impossible to know whether a mother whose acts one has not watched,
nay more, whom one has never seen, has or has not finished laying her
eggs. The bramble-stump under consideration leaves a free space of
nearly four inches above the continuous string of cocoons. Beyond it,
at the actual orifice, is the terminal stopper, the thick plug which
closes the entrance to the gallery. In this empty portion of the
tunnel there is ample accommodation for numerous cocoons. The fact
that the mother has not made use of it proves that her ovaries were
exhausted; for it is exceedingly unlikely that she has abandoned
first-rate lodgings to go laboriously digging a new gallery elsewhere
and there continue her laying.

You may say that, if the unoccupied space marks the end of the
laying, nothing tells us that the beginning is actually at the bottom
of the cul-de-sac, at the other end of the tunnel. You may also say
that the laying is done in shifts, separated by intervals of rest.
The space left empty in the channel would mean that one of these
shifts was finished and not that there were no more eggs ripe for
hatching. In answer to these very plausible explanations, I will say
that, the sum of my observations--and they have been extremely
numerous--is that the total number of eggs laid not only by the
Osmiae but by a host of other Bees fluctuates round about fifteen.

Besides, when we consider that the active life of these insects lasts
hardly a month; when we remember that this period of activity is
disturbed by dark, rainy or very windy days, during which all work is
suspended; when lastly we ascertain, as I have done ad nauseam in the
case of the Three-horned Osmia, the time required for building and
victualling a cell, it becomes obvious that the total laying must be
kept within narrow bounds and that the mother has no time to lose if
she wishes to get fifteen cells satisfactorily built in three or four
weeks interrupted by compulsory rests. I shall give some facts later
which will dispel your doubts, if any remain.

I assume, therefore, that a number of eggs bordering on fifteen
represents the entire family of an Osmia, as it does of many other
Bees.

Let us consult some other complete series. Here are two:

1 2 3 4 5 6 7 8 9 10 11 12 13
F F M F M F M F F F F M F
F M F F F M F F M F M

In both cases, the laying is taken as complete, for the same reasons
as above.

We will end with some series that appear to me incomplete, in view of
the small number of cells and the absence of any free space above the
pile of cocoons:

1 2 3 4 5 6 7 8
M M F M M M M M
M M F M F M M M
F M F F M M
M M M F M
F F F F
M M M
F M

These examples are more than sufficient. It is quite evident that the
distribution of the sexes is not governed by any rule. All that I can
say on consulting the whole of my notes, which contain a good many
instances of complete layings--most of them, unfortunately, spoilt
through gaps caused by parasites, the death of the larva, the failure
of the egg to hatch and other accidents--all that I can say in
general is that the complete series begins with females and nearly
always ends with males. The incomplete series can teach us nothing in
this respect, for they are only fragments starting we know not
whence; and it is impossible to tell whether they should be ascribed
to the beginning, to the end, or to an intermediate period of the
laying. To sum up: in the laying of the Three-pronged Osmia, no order
governs the succession of the sexes; only, the series has a marked
tendency to begin with females and to finish with males.

The brambles, in my district, harbour two other Osmiae, both of much
smaller size: O. detrita, PEREZ, and O. parvula, DUF. The first is
very common, the second very rare; and until now I have found only
one of her nests, placed above a nest of O. detrita, in the same
bramble. Here, instead of the lack of order in the distribution of
the sexes which we find with O. tridentata, we have an order
remarkable for consistency and simplicity. I have before me the list
of the series of O. detrita collected last winter. Here are some of
them:

1. A series of twelve: seven females, beginning with the bottom of
the tunnel, and then five males.

2. A series of nine: three females first, then six males.

3. A series of eight: five females followed by three males.

4. A series of eight: seven females followed by one male.

5. A series of eight: one female followed by seven males.

6. A series of seven: six females followed by one male.

The first series might very well be complete. The second and fifth
appear to be the end of layings, of which the beginning has taken
place elsewhere, in another bramble-stump. The males predominate and
finish off the series. Nos. 3, 4 and 6, on the other hand, look like
the beginnings of layings: the females predominate and are at the
head of the series. Even if these interpretations should be open to
doubt, one result at least is certain: with O. detrita, the laying is
divided into two groups, with no intermingling of the sexes; the
first group laid yields nothing but females, the second, or more
recent, yields nothing but males.

What was only a sort of attempt with the Three-pronged Osmia--who, it
is true, begins with females and ends with males, but muddles up the
order and mixes the two sexes anyhow between the extreme points--
becomes a regular law with her kinswoman. The mother occupies herself
at the start with the stronger sex, the more necessary, the better-
gifted, the female sex, to which she devotes the first flush of her
laying and the fullness of her vigour; later, when she is perhaps
already at the end of her strength, she bestows what remains of her
maternal solicitude upon the weaker sex, the less-gifted, almost
negligible male sex.

O. parvula, of whom I unfortunately possess but one series, repeats
what the previous witness has just shown us. This series, one of nine
cocoons, comprises five females followed by four males, without any
mixing of the sexes.

Next to these disgorgers of honey and gleaners of pollen-dust, it
would be well to consult other Hymenoptera, Wasps who devote
themselves to the chase and pile their cells one after the other, in
a row, showing the relative age of the cocoons. The brambles house
several of these: Solenius vagus, who stores up Flies; Psen atratus,
who provides her grubs with a heap of Plant-lice; Trypoxylon figulus,
who feeds them with Spiders.

Solenius vagus digs her gallery in a bramble-stick that is lopped
short, but still fresh and green. The house of this Fly-huntress,
therefore, suffers from damp, as the sap enters, especially on the
lower floors. This seems to me rather insanitary. To avoid the
humidity, or for other reasons which escape me, the Solenius does not
dig very far into her bramble-stump and consequently can stack but a
small number of cells in it. A series of five cocoons gives me first
four females and then one male; another series, also of five,
contains first three females, with two males following. These are the
most complete that I have for the moment.

I reckoned on the Black Psen, or Psen atratus, whose series are
pretty long; it is a pity that they are nearly always greatly
interfered with by a parasite called Ephialtes mediator. (Cf. "The
Life of the Fly": chapter 2.--Translator's Note.) I obtained only
three series free from gaps: one of eight cocoons, comprising only
females; one of six, likewise consisting wholly of females; lastly,
one of eight, formed exclusively of males. These instances seem to
show that the Psen arranges her laying in a succession of females and
a succession of males; but they tell us nothing of the relative order
of the two series.

>From the Spider-huntress, Trypoxylon figulus, I learnt nothing
decisive. She appeared to me to rove about from one bramble to the
next, utilizing galleries which she has not dug herself. Not
troubling to be economical with a lodging which it has cost her
nothing to acquire, she carelessly builds a few partitions at very
unequal heights, stuffs three or four compartments with Spiders and
passes on to another bramble-stump, with no reason, so far as I know,
for abandoning the first. Her cells, therefore, occur in series that
are too short to give us any useful information.

This is all that the bramble-dwellers have to tell us; I have
enumerated the list of the principal ones in my district. We will now
look into some other Bees who arrange their cocoons in single files:
the Megachiles (Cf. Chapter 8 of the present volume.--Translator's
Note.), who cut disks out of leaves and fashion the disks into
thimble-shaped receptacles; the Anthidia (Cf. Chapters 9 and 10 of
the present volume.--Translator's Note.), who weave their honey-
wallets out of cotton-wool and arrange their cells one after the
other in some cylindrical gallery. In most cases, the home is the
produce of neither the one nor the other. A tunnel in the upright,
earthy banks, the old work of some Anthophora, is the usual dwelling.
There is no great depth to these retreats; and all my searches,
zealously prosecuted during a number of winters, procured me only
series containing a small number of cocoons, four or five at most,
often one alone. And, what is quite as serious, nearly all these
series are spoilt by parasites and allow me to draw no well-founded
deductions.

I remembered finding, at rare intervals, nests of both the Anthidium
and the Megachile in the hollows of cut reeds. I thereupon installed
some hives of a new kind on the sunniest walls of my enclosure. They
consisted of stumps of the great reed of the south, open at one end,
closed at the other by the natural knot and gathered into a sort of
enormous pan-pipe, such as Polyphemus might have employed. The
invitation was accepted: Osmiae, Anthidia and Megachiles came in
fairly large numbers, especially the first, to benefit by the queer
installation.

In this way I obtained some magnificent series of Anthidia and
Megachiles, running up to a dozen. There was a melancholy side to
this success. All my series, with not one exception, were ravaged by
parasites. Those of the Megachile (M. sericans, FONSCOL), who
fashions her goblets with robinia-, holm-, and terebinth-leaves, were
inhabited by Coelioxys octodentata (A Parasitic Bee.--Translator's
Note.); those of the Anthidium (A. florentinum, LATR.) were occupied
by a Leucopsis. Both kinds were swarming with a colony of pigmy
parasites whose name I have not yet been able to discover. In short,
my pan-pipe hives, though very useful to me from other points of
view, taught me nothing about the order of the sexes among the Leaf-
cutters and the cotton-weavers.

I was more fortunate with three Osmiae (O. tricornis, LATR., O.
cornuta, LATR., and O. Latreillii, SPIN.), all of whom gave me
splendid results, with reed-stumps arranged either against the walls
of my garden, as I have just said, or near their customary abode, the
huge nests of the Mason-bee of the Sheds. One of them, the Three-
horned Osmia, did better still: as I have described, she built her
nests in my study, as plentifully as I could wish, using reeds, glass
tubes and other retreats of my selecting for her galleries.

We will consult this last, who has furnished me with documents beyond
my fondest hopes, and begin by asking her of how many eggs her
average laying consists. Of the whole heap of colonized tubes in my
study, or else out of doors, in the hurdle-reeds and the pan-pipe
appliances, the best-filled contains fifteen cells, with a free space
above the series, a space showing that the laying is ended, for, if
the mother had any more eggs available, she would have lodged them in
the room which she leaves unoccupied. This string of fifteen appears
to be rare; it was the only one that I found. My attempts at indoor
rearing, pursued during two years with glass tubes or reeds, taught
me that the Three-horned Osmia is not much addicted to long series.
As though to decrease the difficulties of the coming deliverance, she
prefers short galleries, in which only a part of the laying is
stacked. We must then follow the same mother in her migration from
one dwelling to the next if we would obtain a complete census of her
family. A spot of colour, dropped on the Bee's thorax with a paint-
brush while she is absorbed in closing up the mouth of the tunnel,
enables us to recognize the Osmia in her various homes.

In this way, the swarm that resided in my study furnished me, in the
first year, with an average of twelve cells. Next year, the summer
appeared to be more favourable and the average became rather higher,
reaching fifteen. The most numerous laying performed under my eyes,
not in a tube, but in a succession of Snail-shells, reached the
figure of twenty-six. On the other hand, layings of between eight and
ten are not uncommon. Lastly, taking all my records together, the
result is that the family of the Osmia fluctuates round about fifteen
in number.

I have already spoken of the great differences in size apparent in
the cells of one and the same series. The partitions, at first widely
spaced, draw gradually nearer to one another as they come closer to
the aperture, which implies roomy cells at the back and narrow cells
in front. The contents of these compartments are no less uneven
between one portion and another of the string. Without any exception
known to me, the large cells, those with which the series starts,
have more abundant provisions than the straitened cells with which
the series ends. The heap of honey and pollen in the first is twice
or even thrice as large as that in the second. In the last cells, the
most recent in date, the victuals are but a pinch of pollen, so
niggardly in amount that we wonder what will become of the larva with
that meagre ration.

One would think that the Osmia, when nearing the end of the laying,
attaches no importance to her last-born, to whom she doles out space
and food so sparingly. The first-born receive the benefit of her
early enthusiasm: theirs is the well-spread table, theirs the
spacious apartments. The work has begun to pall by the time that the
last eggs are laid; and the last-comers have to put up with a scurvy
portion of food and a tiny corner.

The difference shows itself in another way after the cocoons are
spun. The large cells, those at the back, receive the bulky cocoons;
the small ones, those in front, have cocoons only a half or a third
as big. Before opening them and ascertaining the sex of the Osmia
inside, let us wait for the transformation into the perfect insect,
which will take place towards the end of summer. If impatience gets
the better of us, we can open them at the end of July or in August.
The insect is then in the nymphal stage; and it is easy, under this
form, to distinguish the two sexes by the length of the antennae,
which are larger in the males, and by the glassy protuberances on the
forehead, the sign of the future armour of the females. Well, the
small cocoons, those in the narrow front cells, with their scanty
store of provisions, all belong to males; the big cocoons, those in
the spacious and well-stocked cells at the back, all belong to
females.

The conclusion is definite: the laying of the Three-horned Osmia
consists of two distinct groups, first a group of females and then a
group of males.

With my pan-pipe apparatus displayed on the walls of my enclosure and
with old hurdle-reeds left lying flat out of doors, I obtained the
Horned Osmia in fair quantities. I persuaded Latreille's Osmia to
build her nest in reeds, which she did with a zeal which I was far
from expecting. All that I had to do was to lay some reed-stumps
horizontally within her reach, in the immediate neighbourhood of her
usual haunts, namely, the nests of the Mason-bee of the Sheds.
Lastly, I succeeded without difficulty in making her build her nests
in the privacy of my study, with glass tubes for a house. The result
surpassed my hopes.

With both these Osmiae, the division of the gallery is the same as
with the Three-horned Osmia. At the back are large cells with
plentiful provisions and widely-spaced partitions; in front, small
cells, with scanty provisions and partitions close together. Also,
the larger cells supplied me with big cocoons and females; the
smaller cells gave me little cocoons and males. The conclusion
therefore is exactly the same in the case of all three Osmiae.

Before dismissing the Osmiae, let us devote a moment to their
cocoons, a comparison of which, in the matter of bulk, will furnish
us with fairly accurate evidence as to the relative size of the two
sexes, for the thing contained, the perfect insect, is evidently
proportionate to the silken wrapper in which it is enclosed. These
cocoons are oval-shaped and may be regarded as ellipsoids formed by a
revolution around the major axis. The volume of one of these solids
is expressed in the following formula:

4 / 3 x pi x a x (b squared),

in which 2a is the major axis and 2b the minor axis.

Now, the average dimensions of the cocoons of the Three-horned Osmia
are as follows:

2a = 13 mm. (.507 inch.--Translator's Note.), 2b = 7 mm. (.273 inch.-
-Translator's Note.) in the females;

2a = 9 mm. (.351 inch.--Translator's Note.), 2b = 5 mm. (.195 inch.--
Translator's Note.) in the males.

The ratio therefore between 13 x 7 x 7 = 637 and 9 x 5 x 5 = 225 will
be more or less the ratio between the sizes of the two sexes. This
ratio is somewhere between 2 to 1 and 3 to 1. The females therefore
are two or three times larger than the males, a proportion already
suggested by a comparison of the mass of provisions, estimated simply
by the eye.

The Horned Osmia gives us the following average dimensions:

2a = 15 mm. (.585 inch.--Translator's Note.), 2b = 9 mm. (.351 inch.-
-Translator's Note.) in the females;

2a = 12 mm. (.468 inch.--Translator's Note.), 2b = 7 mm. (.273 inch.-
-Translator's Note.) in the males.

Once again, the ratio between 15 x 9 x 9 = 1215 and 12 x 7 x 7 = 588
lies between 2 to 1 and 3 to 1.

Besides the Bees who arrange their laying in a row, I have consulted
others whose cells are grouped in a way that makes it possible to
ascertain the relative order of the two sexes, though not quite so
precisely. One of these is the Mason-bee of the Walls. I need not
describe again her dome-shaped nest, built on a pebble, which is now
so well-known to us. (Cf. "The Mason-bees": chapter 1.--Translator's
Note.)

Each mother chooses her stone and works on it in solitude. She is an
ungracious landowner and guards her site jealously, driving away any
Mason who even looks as though she might alight on it. The
inhabitants of the same nest are therefore always brothers and
sisters; they are the family of one mother.

Moreover, if the stone presents a large enough surface--a condition
easily fulfilled--the Mason-bee has no reason to leave the support on
which she began her laying and go in search of another whereon to
deposit the rest of her eggs. She is too thrifty of her time and of
her mortar to involve herself in such expenditure except for grave
reasons. Consequently, each nest, at least when it is new, when the
Bee herself has laid the first foundations, contains the entire
laying. It is a different thing when an old nest is restored and made
into a place for depositing the eggs. I shall come back later to such
houses.

A newly-built nest then, with rare exceptions, contains the entire
laying of one female. Count the cells and we shall have the total
list of the family. Their maximum number fluctuates round about
fifteen. The most luxuriant series will occasionally reach as many as
eighteen, though these are very scarce.

When the surface of the stone is regular all around the site of the
first cell, when the mason can add to her building with the same
facility in every direction, it is obvious that the groups of cells,
when finished, will have the oldest in the central portion and the
more recent in the surrounding portion. Because of this juxtaposition
of the cells, which serve partly as a wall to those which come next,
it is possible to form some estimate of the chronological order of
the cells in the Chalicodoma's nest and thus to discover the sequence
of the two sexes.

In winter, by which time the Bee has long been in the perfect state,
I collect Chalicodoma-nests, removing them bodily from their support
with a few smart sideward taps of the hammer on the pebbles. At the
base of the mortar dome the cells are wide agape and display their
contents. I take the cocoon from its box, open it and take note of
the sex of the insect enclosed.

I should probably be accused of exaggeration if I mentioned the total
number of the nests which I have gathered and the cells which I have
inspected by this method during the last six or seven years. I will
content myself with saying that the harvest of a single morning
sometimes consisted of as many as sixty nests of the Mason-bee. I had
to have help in carrying home my spoils, even though the nests were
removed from their stones on the spot.

>From the enormous number of nests which I have examined, I am able to
state that, when the cluster is regular, the female cells occupy the
centre and the male cells the edges. Where the irregularity of the
pebble has prevented an even distribution around the initial point,
the same rule has been observed. A male cell is never surrounded on
every side by female cells: either it occupies the edges of the nest,
or else it adjoins, at least on some sides, other male cells, of
which the last form part of the exterior of the cluster. As the
surrounding cells are obviously of a later date than the inner cells,
it follows that the Mason-bee acts like the Osmiae: she begins her
laying with females and ends it with males, each of the sexes forming
a series of its own, independent of the other.

Some further circumstances add their testimony to that of the
surrounded and surrounding cells. When the pebble projects sharply
and forms a sort of dihedral angle, one of whose faces is more or
less vertical and the other horizontal, this angle is a favourite
site with the Mason, who thus finds greater stability for her edifice
in the support given her by the double plane. These sites appear to
me to be in great request with the Chalicodoma, considering the
number of nests which I find thus doubly supported. In nests of this
kind, all the cells, as usual, have their foundations fixed to the
horizontal surface; but the first row, the row of cells first built,
stands with its back against the vertical surface.

Well, these older cells, which occupy the actual edge of the dihedral
angle, are always female, with the exception of those at either end
of the row, which, as they belong to the outside, may be male cells.
In front of this first row come others. The female cells occupy the
middle portion and the male the ends. Finally, the last row, closing
in the remainder, contains only male cells. The progress of the work
is very visible here: the Mason has begun by attending to the central
group of female cells, the first row of which occupies the dihedral
angle, and has finished her task by distributing the male cells round
the outside.

If the perpendicular face of the dihedral angle be high enough, it
sometimes happens that a second row of cells is placed above the
first row backing on to that plane; a third row occurs less often.
The nest is then one of several storeys. The lower storeys, the
older, contain only females; the upper, the more recent storey,
contains none but males. It goes without saying that the surface
layer, even of the lower storeys, can contain males without
invalidating the rule, for this layer may always be looked upon as
the Chalicodoma's last work.

Everything therefore contributes to show that, in the Mason-bee, the
females take the lead in the order of primogeniture. Theirs is the
central and best-protected part of the clay fortress; the outer part,
that most exposed to the inclemencies of the weather and to
accidents, is for the males.

The males' cells do not differ from the females' only by being placed
at the outside of the cluster; they differ also in their capacity,
which is much smaller. To estimate the respective capacities of the
two sorts of cells, I go to work as follows: I fill the empty cell
with very fine sand and pour this sand back into a glass tube
measuring 5 millimetres (.195 inch.--Translator's Note.) in diameter.
>From the height of the column of sand we can estimate the comparative
capacity of the two kinds of cells. I will take one at random among
my numerous examples of cells thus gauged.

It comprises thirteen cells and occupies a dihedral angle. The female
cells give me the following figures, in millimetres, as the height of
the columns of sand:

40, 44, 43, 48, 48, 46, 47
(1.56, 1.71, 1.67, 1.87, 1.87, 1.79, 1.83 inches.--Translator's
Note.),

averaging 45. (1.75 inches.--Translator's Note.)

The male cells give me:

32, 35, 28, 30, 30, 31
(1.24, 1.36, 1.09, 1.17, 1.17, 1.21 inches.--Translator's Note.),

averaging 31. (1.21 inches.--Translator's Note.)

The ratio of the capacity of the cells for the two sexes is therefore
roughly a ratio of 4 to 3. The actual contents of the cell being
proportionate to its capacity, the above ratio must also be more or
less the ratio of provisions and sizes between females and males.
These figures will assist us presently to tell whether an old cell,
occupied for a second or third time, belonged originally to a female
or a male.

The Chalicodoma of the Sheds cannot give us any information on this
matter. She builds under the same eaves, in excessively populous
colonies; and it is impossible to follow the labours of any single
Mason, whose cells, distributed here and there, are soon covered up
with the work of her neighbours. All is muddle and confusion in the
individual output of the swarming throng.

I have not watched the work of the Chalicodoma of the Shrubs with
close enough attention to be able to state definitely that this Bee
is a solitary builder. Her nest is a ball of clay hanging from a
bough. Sometimes, this nest is the size of a large walnut and then
appears to be the work of one alone; sometimes, it is the size of a
man's fist, in which case I have no doubt that it is the work of
several. Those bulky nests, comprising more than fifty cells, can
tell us nothing exact, as a number of workers must certainly have
collaborated to produce them.

The walnut-sized nests are more trustworthy, for everything seems to
indicate that they were built by a single Bee. Here females are found
in the centre of the group and males at the circumference, in
somewhat smaller cells, thus repeating what the Mason-bee of the
Pebbles has told us.

One clear and simple rule stands out from this collection of facts.
Apart from the strange exception of the Three-pronged Osmia, who
mixes the sexes without any order, the Bees whom I studied and
probably a crowd of others produce first a continuous series of
females and then a continuous series of males, the latter with less
provisions and smaller cells. This distribution of the sexes agrees
with what we have long known of the Hive-bee, who begins her laying
with a long sequence of workers, or sterile females, and ends it with
a long sequence of males. The analogy continues down to the capacity
of the cells and the quantities of provisions. The real females, the
Queen-bees, have wax cells incomparably more spacious than the cells
of the males and receive a much larger amount of food. Everything
therefore demonstrates that we are here in the presence of a general
rule.

But does this rule express the whole truth? Is there nothing beyond a
laying in two series? Are the Osmiae, the Chalicodomae and the rest
of them fatally bound by this distribution of the sexes into two
distinct groups, the male group following upon the female group,
without any mixing of the two? Is the mother absolutely powerless to
make a change in this arrangement, should circumstances require it?

The Three-pronged Osmia already shows us that the problem is far from
being solved. In the same bramble-stump, the two sexes occur very
irregularly, as though at random. Why this mixture in the series of
cocoons of a Bee closely related to the Horned Osmia and the Three-
horned Osmia, who stack theirs methodically by separate sexes in the
hollow of a reed? What the Bee of the brambles does cannot her
kinswomen of the reeds do too? Nothing, so far as I know, can explain
this difference in a physiological act of primary importance. The
three Bees belong to the same genus; they resemble one another in
general outline, internal structure and habits; and, with this close
similarity, we suddenly find a strange dissimilarity.

There is just one thing that might possibly arouse a suspicion of the
cause of this irregularity in the Three-pronged Osmia's laying. If I
open a bramble-stump in the winter to examine the Osmia's nest, I
find it impossible, in the vast majority of cases, to distinguish
positively between a female and a male cocoon: the difference in size
is so small. The cells, moreover, have the same capacity: the
diameter of the cylinder is the same throughout and the partitions
are almost always the same distance apart. If I open it in July, the
victualling-period, it is impossible for me to distinguish between
the provisions destined for the males and those destined for the
females. The measurement of the column of honey gives practically the
same depth in all the cells. We find an equal quantity of space and
food for both sexes.

This result makes us foresee what a direct examination of the two
sexes in the adult form tells us. The male does not differ materially
from the female in respect of size. If he is a trifle smaller, it is
scarcely noticeable, whereas, in the Horned Osmia and the Three-
horned Osmia, the male is only half or a third the size of the
female, as we have seen from the respective bulk of their cocoons. In
the Mason-bee of the Walls there is also a difference in size, though
less pronounced.

The Three-pronged Osmia has not therefore to trouble about adjusting
the dimensions of the dwelling and the quantity of the food to the
sex of the egg which she is about to lay; the measure is the same
from one end of the series to the other. It does not matter if the
sexes alternate without order: one and all will find what they need,
whatever their position in the row. The two other Osmiae, with their
great disparity in size between the two sexes, have to be careful
about the twofold consideration of board and lodging. And that, I
think, is why they begin with spacious cells and generous rations for
the homes of the females and end with narrow, scantily-provisioned
cells, the homes of the males. With this sequence, sharply defined
for the two sexes, there is less fear of mistakes which might give to
one what belongs to another. If this is not the explanation of the
facts, I see no other.

The more I thought about this curious question, the more probable it
appeared to me that the irregular series of the Three-pronged Osmia
and the regular series of the other Osmiae, of the Chalicodomae and
of the Bees in general were all traceable to a common law. It seemed
to me that the arrangement in a succession first of females and then
of males did not account for everything. There must be something
more. And I was right: that arrangement in series is only a tiny
fraction of the reality, which is remarkable in a very different way.
This is what I am going to prove by experiment.





Next: THE MOTHER DECIDES THE SEX OF THE EGG

Previous: THE OSMIAE



Add to del.icio.us Add to Reddit Add to Digg Add to Del.icio.us Add to Google Add to Twitter Add to Stumble Upon
Add to Informational Site Network
Report
Privacy
SHAREADD TO EBOOK